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- I. INTRODUCTION

The original plan for this thesls was to derive an
analytical expression giving the illumination on any sur-
face of a light court or well in teims of the dimensions
and reflection fectors of the various surfaces of the light
court. Following this it was intended to verify the resulise
by experimentation with a2 medel of a light court. Pre-~
liminary eindy, however, showed it wiser to consider one-
dimensional ocasen belfore proceeding to the more compli~
cated one; hence it wap decided to iﬁﬂﬁsﬁigaga pther problems
in interreflection involving parallel planes. Even the
exact selutions of ihese cases are complicated by the
necessity of integrating ellipide integrals of the third
kind and of finding the solution of the Fredholm type of
integral sguation with infinite limits,

The general approach te the problem of interreflections,
by the method of inlegral eguations, is first discussed, The
integral equations for several cases sre established; namely,
two parallel infinite halfl yianegﬂi$lumim&taﬁ by & uniform
diffuse plane source across one and, twe parallel infinite
giaﬁéa illuminated by & lumihous rod parallel to the planes,
two Farallﬁl infinite planes illuminated by a peint source
between them and finslly thosze for the light court illumi-
nated by a uniform diffuse sky or diffuse ceiling. All
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surfaces are considered to be matt i. 8., the light which
is emitted obeys the cosine law of emission.

#hile it is possible, by formal mathematics, to solve
the integral equations in this thesis, they do mot yisld to
easy solution. An approximation scheme is discussed and
applied to one of the apecial cases.

The resulis obiained by approximation methods are com-
pared with the experimenially oblained results of Heacock
and Lambert.



1. REVIEY OF LITZRATURE

The analyiic treatment of interreflections was apparently
begun in 1920 by S. P. Oweni®*, in his study of *On Rediation
from a Cylindrical Wall*. This work was followed in the same
year by A. C. Bartlett'slsimpler method. It remained for
Ew~$ﬂ@k1@?gg howsver, to apply the methed of integral equations
to the problem of interreflection; he considered the inter-
reflsctions in an infinitely long cylinder, & finite cylinder
and & eylinder with a longitudinal slit. In later papers by
Buckley™r%4 the interreflections in & finite cylinder 1llu-
minated by a uniform diffuse sky are discusseed, The solution
of all these cases by Buekley depends upon an exponentisal
approximetion of the kernel, a methed devised by E. T.
whittakerl®, The method of solution, however, is & modifi~
cation of that suggested by Whittaker. In 1938 WhitmorelS
analyzed some of the above problems, using the differential
ﬁqﬁ&%1¢§ﬁ resuliing from the integral equations. Yamanaut1l?
(often referred to as Yamautl) carried out the treatment of
‘interveflsctions by a sel of n linear aqaatiﬁnﬁ'ana arrived
at the Fredholm solution, although he did not explicitly
state the integral equation. He has also studied the inter-
reflections in an infinite agiin&arlﬁ.

¥A11 nombersd references given in "Literaturs Cited?.



All of the analytical work, eo far, has been on interw

reflections in ecylinders and spheres with two excepiions:

{1) complicated graphical integration scheme devised by

As Do Moorel? in 1926, to study the interrsflections in a

1ight eourt and (2) a partieunlsar c¢sss involving perallel planes
connidered by Buckley=.

A subsequent paper by %amning’aa& %hit&a in 1930 treats
another apselial case using Heore's method. A4s far as ig known
the present treatment is the first attempt to uga‘inzagxal
equations in the came of parallel planes in which the lumi-

{forn.

nosity of the planes 18 nonew

In the field of experimental research Heaceok &mé £amh@r%9
in 1930 ussd s wodel to investigate the distribdbution of
tiimmination in & light court. They developed an empirical
equation for the distribkution of illumination in terms of the
dimensions of the light court, but this relationship is only
directly applicable to peinis on the vertical center line of
the walls of the light eourt. The resulis are, ot best,
approximate for all other pointe in the court.

A1l workers, whetber in snalytical er experimental re-

search, have used matt surfsces, which lend themsslves te
eane of7¢@§p@$&tiaaxsnﬁ in addition appreach the actual con-

ditions met in the practice of illuminating engineering.
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L(%9)==1amia&$ity or radiant power emitied from a sur-
face of unit area evaluated in terms of the stand-
ard visibility function.

The illumination at the point (%, 4. due to the entire

enclosure is

E (x,y) = J L(xy) - K{x,y;%,y) dov > - oo 1
3
whaée the integration is taken over the surface visible from
the point (x,y)
The resuliing inerease in the luminomity at (y,y,)
is given hy equation 1 multiplied by the reflection factor of

the surface at (x.y.)) ,i. &,

L,y = y(x\,“\\ 5 Lix,y) - Kix,y, %,,y,)) deo
s
where, f = reflection factor (& numeric).

The total luminosity at (yy,) is

Llx,g) = Relxyy) + p (540 8 L(x,y): Wlx, y; x,y) do == - -2
3
The total illumination at I&,jo is obtaiped from
squation 2 by substiluting
L=pk

Equation 2 becomes

E(X.,\].) = Eo(xy) ¢ jr (K)‘j) . E.(x,\j) . K(x,\j-)x,,nh) dg- ~——— — - 3
S
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whers
E(yy)=the illumination at point (x, y) and ies equal to the
power received by each unit of area; the power is
gvaluated in terms of the stendard visibility
function.
Equations 2 and 35 are applicable in all cases, regardlecs

of the configuration of the boundary surface.

2.

&. For two parallel infinite halfl planes illuminated by
& uniform diffuse plane source across one end.

Figure 2 shows & cross-secltion of two parsllel infinite
half planes with the uniform diffuse plane source across one
end. The planes are designated by A' and A" where the acesnis
amﬁawu the upper and lower planes respectively.

The surfaces of the planes are assumsd to be natt, i. e.,
perfectly diffusing. & perfectly diffusing surface may be
defined as one which emits lumincous flux according to the

Agémuﬁw lawil {Moon p. 2856)

Tle= I,Cs® __ _ e __ &

whare
1, = the candlepower of ithe surface (or any portion of
the surface) normal to itself, (e=0)

le)=the candlepower at an angle © from the normal.



il

The direct component of illumination is determined in
the following way. Consider figure 3 which shows & finite
rectangular plane source. The width of the source is unity,
while the lengih is expressed in terms of the angle sub-
tended at the poinl being illuminated. The expression
given by woonll(p. 324) for the illuminetion on a plane
perpendicular to such a source and on a perpendicular through

one corner of the source is
L{p-pCoss]| ~mmmmmmm 5

whers
. = luminosity of the unifors diffuse plane source
@ = angles subtended al the point by the length of
the source as shown in figure 3.
¥ = angle subtended at the point by the width of
the source.
To obtain the illumination from an infinitely long plane
source, p and p, are replaced by T and the resulting expresgion

is then multiplied by two. Expression 5 then becomes

5 (- snv)

where |
Y = angle subtendeq 8t the source by the point being

illuminated as is shewn in figure 3.
the direct components of the illumination on the A' and

A¥ of figure 2 are respectively
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A ) [ 6

and

¢, » |- "
m?*uMT|ﬂW%w;lllllllllu!lilq

where the accents indicate to which plane the quantities refer.
The component of illumination dueé to interreflsction may

be found from an expression given by wgﬁww {(p-324). Figure 4

showg an incremental plane strip for which Moon gives the il-

~

lomination, on a plane parallel to i%, as

rmnﬁnom« mifL Sin® Y ———————— ——— 8

2Twre
where
dE =width of the incremental strip
vo =distance from the source to the point being il-
luminated
¥ = angle subtended, at the point illuminated, by
the length of ihe source.
¥ =sangle between the plane strip and roof figure 4.
The illumination from an infinitely long plane strip is
ehtained by doubling expression B and substituting I for ¥ .
For the A* and A" planes respectively, of figure 4, the il-
lumination is
L (5%)

2o

dE(x) = no%x_nw__ — e g
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and L
dE' () = LI8) Cos® " dg' ___________
2"6“
whers « = 9c°- P

and the accents designate to which planes the quantities refer.

After replacing - byfE , where P is the reflection
factor, and expressing the angles and distances in terms of
the coordinates x and ¥y 2 equations 8 and 9 beconme

PE(E") d%"
21+ (g"-x)? ]
FE'(5') 4y
Z[\+(§l -—-X")Z 32

dE (x) =

and

dE'(x) =

On the A' plane the total illumination, due to inter-

| raflection, is
0, ” "(gn) ‘d§"
E'(xy= P E
Z v _4\273
A [r+ (5" —x)*]

and on the AY plsne it is
®

' [ M d !
E“"‘"):‘I:?J E() 98 __ _ _

D (gw)*] ™=

Q
The total illumination is given by the sum of ihe di-
rect component of illuminaiion and the component of illumi-

nation due to interrellection.



14

On the 4' plane the illumination is

o

) = b _ x! f“ E“(E") de"_ _ _ _ ____
eo=gl-gi=] v £ [[H(g“-x')‘]”* 5 N

and on the A* plane the illumination is

L. __L - X" t E‘(E') d r
£ = |- ] + 4 }[w(g'—x")‘]”‘ i *

These two equations may be combined intc one by sub-
stituting equation 13 and 14 (or vice versa).
4 féféf » eguations 13 and 14 beconme

[~ ]

_ — r—————— + e — — — — —— — — r—

o

An approximate solution of ihis equation is given in a
later section begause af(i%s importance in illumineting engin-
eering.

b« For two parallel infinite planes illuminated by a
luminou® rod parallel to the planes. |

Consider the luminous rod shown in figure 5.

moonld {p. 3%&) gives the illumination from such a source in
terms of the angle subtended by the length of the rod and
the angle far&a& by the line joining the point illuminated
and the plane through the axis of the rod parallel to the
surface illuminated, as

él—"_‘-‘-:Y-Cos T Oin v ‘o'-X Cos\)( —_—————————————16
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where
L= luminosity of the rod
8= diameter of the rod
Yo= digtance from center of rod to point illuminated
Y= angle sublended by rod at point illuminated.
Y-angle formed by the line joining the point 1l-
iﬁaiﬁaﬁeﬁ and the plane through the axis of the
| ra& parallel to &hﬁ‘gnrfasa»ilkumiaatsé*
After substitution of the appropriste angle § and
multiplicstion by two for an infinite rod, the above equstion
@@@@maa,‘fér the direct component af illumination on the A!

and A® planes respectively, of figure 6

E,()()t):. _\:.§.‘_ Cos \V' = L,-S G-t R U |
z¥o 2—[&’ +(\—t)"]
and

E_“(X",t) - \iél\ Cﬁs IP" - L_- S £ o ———__,16

where
% = perpendicular distance from the A" plane to center
of the source.
The acegents indicate to which planss the quantities re-
fer. |
The component of illumination due to interreflection may
be fonnd

[row-Bn expression giﬂan;h§,§aﬁa31.r In this parti-
ﬂﬁiafyaéﬁé it is iéﬁnﬁie&l with that given under section 8a
for the case of two psrallel infinite half planes illuminated
by a uniform diffuse plane source, with the axmegtién that the
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1imits of integration in the present case ars from minus in-
finity te plus infinity.

Hence the total illuminetion, on the A' plane from
. equationa 11 and 17, is

oty L& Gob £ g E"(5.¢)
7‘{}' +(\—t)1‘_\ 2 [\+ (gu__x.)z ]3/1.

-00

and on the A®* plane from equations 12 and 18, is

[ o]

Ext)= bt ¢ S E (g, ¢) de' —____ o
’ A JoTr + (6—x ™ 5 z

where, Elxt) designates the illuminstion at x for the source
at t (see figure 6) and ihe sccents indicate to which planes
the guantities refer.

These iwo equations may be combined into one by substi-
tuting equation 19 in equation 20 (or vice versa).

if f':f": § and t=% the above eguations become,

E(x )= %86 P j (5. 4) _dE —-———-21
: 2 ‘\-[xl’\'iz] + 2 ' [\_\_ (§~K)1_)3h‘ §

¢. For two parallel infinite planes illuminated by a
point source between ithem.

Consider figure 7 which shows a cross—gsection of twe
parallel infinite plasnes illuminated by & point source which
§ig placed & distance % up from ihe lower plane A". As in

the previous cases the surfaces are assumed to be matt.
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The direct componeni of illumination from the point
source to a peint on the upper plane AY snd to » point on
the lower plene A" are respeciively

B (x t) = T-G-0*> .
) =

Y—( '_t)z. " K,Z 3/2‘.

and

B" () ¢) = ‘_ t"l'-\*tx“rrh ————————————
where .
1 = intensity of the source; independent of direction.
and x = rading of the cirele whose center is the foot of
the perpendicular dropped from the source to the
AY or A" plane,

The accents indicate to which planes the guantities
raler.

The illuminetion dve to interreflesction may be obtasined
from an expression givem by Meon™}. Consider figure 8, in
which the luminous source ia a plane incremental circular
band of radiue 5 and width d . The point at which the il-
jumination is desired is one unit distant from the source
along the perpendicunlar axis of the circular band and offset
s distance x from the axis as shown., Hoonll {p. 324) gives
{iliumination at a poeint on a plane psrallel to the source,

an

2L(E)- & P+ wag?)

d Elx) =
[(\,\.xz* 52 )‘L -4%2. Kz]"/l




Applying this to the particuler ease at hand and gub-
stituting
L= P E
it is found that the illumination received from the A* ly

the A*' plane is

[20)
. W | ET(8")- B (veet gt "
E(w) = { ——————
2y o U\*_*.z*g"z.)z__ 4%”1"'213/7‘ 'é A
and from the A' by the AY plane is
“ E:(gl)‘ §I‘ (l+X“z+ S,z)
B (R = ?.f' 7 dg' 25

| Llexeg™y o 4 g7

where the accents indicate to which planes the guantities
refer.

The total i1llumination at any point on the A*' plane is

{40]
gty = _L0-6) J E"(E)¢) 8" (wx'}?"’) dg"—-- 20
[x% G-t ]¥ o Li+x™y")2—ag” "%

and at any point on the A® plane is

@

" 1.t ' e'(g'). ¥ (H—‘L"z+ ’§'1 ) de'——_2
E (X ’t) = [-x“z* {l}’lz + zf { [(‘+ X“i-\ S‘x)z‘ 4§.lx"?—}3,z g 1

These two equaiions may be combined into one by sub-
stituting equation 26 in equation 27 (or vice versaj.
It o Y“= § and t=3 the equation 26 and 27 become

T + 2p S E('§."::)-§-(\+x"+ $%) dg —--ze
'—ZY_XZ *__:;]3/1 {(H- " gz)l_ 421*113,2

E(xL) =
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4. For a light court illuminated by & uniform diffuse
sky or diffuse ceiling.

The problem of finding the illumination on any of the
surfaces of a light court illumineted by & uniform sky, or
a room illuminated by & uniform ceiling source, is a more
diffioult case; yet from the illuminaiing engineer's point
ef view most important.

The integral equations for this case, which are long
and cumbersome, are not here explicitly stated in terme of
the variables as was done in the preceding cases. The ap~
proach to the problem, however, ig outlined.

Figure 9 shows the coordinate system used, the center
of the ceiling being taken as the origin. The widih of the
éaar% is 2b (y axis), the lenglh Z¢ (2 axis), and the depih
2 (x axis).

The point at which the illumination is desired is (%o3,%.)
snd the variable point, on & boundary surface from which the
ineremental f{lux is emitted, is (xy,7). As before the total
illumination, given by the direct component plus the com-

ponent of illumination due to interreflection, is

L(O,‘j,i)-(ds «.Cos B do

E(xo’\J.,zo) =

wd?
(ceiling)
Py 2)- BE(xy,2) C°5‘P Cosyy doe —— ——~_ 29
Tr*

(walls, floor, ceiling)



where

d =distance from a point of the source to the peint
being illuminated.

r=distance from the sarface reflecting light to the
point being illuminaied.

* -angle between the normal to the ceiling and the
line joining a peint of the ceiling to a point of
‘the surface reflecting light.

g = angle between the normal to the surface reflecting
light and the line Jjoining a point of the ceiling
and the peint of the surface reflecting light.

Y -angle between the normal to the surface reflecting
light and the line joining the point of the surface
reflecting light and the point being illuminated.

VY - angle between the normsl to the surface of the point
being illuminated and the line Jjoining the point
of the refleeting surface with the point being il-
luminated.

In the gecond integral the integraition ie carried out
over all surfaces visible from the source and if the source
is a reflecting surface (ceiling) the integration over this
surface must also be included.

The first integral of equation 29 has been evalusied by
?amanauﬁil?. However, since the results of the integration

are not found in text books they are repeated here, The ilw
lumination ai any point may be expressed in vector form. The



magnitudes of the component vectors are given below; they

represent the direct illumination. |
The components in the x, y and z directions respectively,

are
E'x = L - Va"\’ Tan' - z2¢ JX: + (Yo—b)z
2T 1y x2 +(yo—b)? x2+2d + (yo-b)* _c?

Yot b Tovf‘ 2¢ \l X% ¢ (Yo +b)%

o ‘
¥ x2 + (. +b)? X2 +2E 4 (gorb)r-c?

Z2o-C an“‘___ 2b \] XQz '\‘(20"‘)1
VXE + (2o-€)% X2 443 + (2o- )" - b2

2 2 ‘
4 —2o*C  Tan' 20 VXS 4 (z1e) el 30
VX2 4 (2o40)? XS4 ye + (2ot -b* .

E. - L xo TQV\.‘ 2¢ q x: + (:‘o__.h)‘&
J T am VXZ“"(‘jo—'b)L X 4+ 23 4 (yo-b)*-<*
_ Xo Tars' 2¢ VxE 4 (gort)® 3
JX:-\' (o +¥)* ' X +Zot (301-\:)"-— c
2 2
e b | X Tad 2b Vxe+ (2e-©)
2 = n " x:* (?c"c)l x: x> ,:._“_(z_o‘c)‘l__bf.
2 2 s
Xo To.n—‘ 2b. 4 = +(2°*C) ] ————— 32

- : 2
‘l X2 & (Zot ) xXg -\-jf +(Zot y-b
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where the acgenis indicale that the illumination is direct
from the source to the point  (%e)Y.,2d),

These equations in & scmewhat modified form are given
in Moont! (p. 264) in terms of the angles subtended by the
point in question. They are Msé graphically represented by
moon'! (p. 269) for ease of computation but in this form, they
are not applicable to the problem of interreflection.
| In order to obtain the total illumination the following
method of suceessive substitution was tried.

Consider the integral equation

K

C‘)(x):— ]tm x ’/\[K(x,s) fe) ds e __ 33

O
where f(x), K(x) and A are known.

To determine the solution of equation 33 let
; .
¢t = Z A" da(x) e __324

The Qn's are determined by placing the series in
equation 33 and equating the coefficients of like pewers of
A « They are |

4)01 x}) = *‘:(’0

and

If the series of equation 34 is uniformly convergent

it is the solution of the integral equation 33.



& lengihy sttewnpt was made to use this method of sucw
cessive substitutions in an endesvor to solve the integral
equations for the light court; but @m,mﬂﬁw &wamwwﬁmwamw in-
tegral equations sre involved it has ap yet not been possible

to find even the second term of the respective series.

3. bmm&@%wﬁﬁww,mawmﬁwaﬁ of integral equations by expenential

series.

Ee Ts ﬁwwaw@wwuwmw in his paper "On ﬁw@ Numerical Solution
of Integral Equations® (1917), presents several methods for
the solution of integral egquations of the Abel and Poisson
types. Since part of ihis work is applicable to the solution
of two mm@@www cases discussed in this thesis, ihe method 1is
reviewed hers.

The Fredholm eguation of the Poisson type
b

Au?& = h:ﬁ + A\ M A:mu K(x-s)ds _ _____ __ _ _ 36
‘ a
hag the solution
b
Av—xv = *,lﬁx« + y% M.\.A%imw Vv. %AMV.LM ||||||| 37

where the resolvent kernel satisfles the equatlion
b

HJ:ULH Yalx) « Vw 7 (552 Kix-s5) do - 30

a
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For the particular type of eguation which arises in the
gpecial case solved in this thesis Whittaker suggests the use
of an exponentisl series as an approximation for the kernel.
One greal advantage in exponential approwimation is that each
exponential term inwvelves two disposable constants, whereas a
term of a polynomial ipvolves only one disposable coenstant.

It is therefore, Whitleker states, in general possibis to ob-
tain as high & degree of acouragy in spproximation with g
exponential terms as with a pclynomial of 81 terms. The
existence of infinite limiis also makes the polynomisl obe
jectionable. _

#hile Bhittaker ostlines & method by Pronyi® and Buckleyd
refers the reader to the original work for means of determining
the dispossnble constanis il was found exge&iaﬁi to use & method
devised by J. We Te Falahié and iater simplilied by Gheury
de Bray®, The essentials of ihe metbnd are given here for
the case of & two ternm sxponential sum,

consider the curve in figure 10 which is to be analyzed
into the exponential sum

y= A\eu‘x_\. R, e . 39
where the Ats and <«%g are the constanis to be determined.

Choosing four equidistant points a distance ©
apart as shown in the figure; the corresponding equations

involving x, where x is measured from the first ordinste
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chosen, are

k3
yos Afi v MZe g

3 s .
Ya= RZ +xfAz% ——— — = - - — — . 4%

where

{ X
zf=e“‘ IR V' §

If the four equations 40, 41, 42 end 43 are solved for
z it will be found that the values of 2; and my are the roots

of the guadratie eguation

iz"‘ b02+pl = 0

where the p's are constents. The z's may be determined after
finding the p*s, but this is unnecessary since Gheury de Bray
has combined the steps; the result being the following egua~
tion.

(37~ 392) 2° + (3age-yay) 2 + Q=Yg = © ——--—-- s
from which the z's are determined directly.
Since 2, s ¥
% ol
and ! E, =€ 2. X
the «'s may be determined by the use of logarithms.

To determine the A*s the following are used

Yo= A+ fAa e m e mmm——— 40
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x 7\{9—«‘*{ a,%, + a,be 1 Q“‘"x{ Q2 b, + C\z‘aa}
p

v %y Pz Pi—%a Pa-*2

y e~ﬁ‘!{ a,b, + Az b, - G|b| — Q,-,_‘). )
Presh Bty Bi= Br—*a

+ e_.@,_\( a, by + arb, o b, _ o2 \72. }
Pat %y Bz+X ﬂt“\ Bz -%z2
Y 4 2

By equating coelficients of like powers of ¢ the fol-

lowing equations are oblained

20(\0.7\ -+ 20(2&227\ . \::-0 ————— 49
I Bl =
20,0, A + 2:‘1 Qz:\ 4 1 =0 —~———___ 50
p§ ~ ot pz - %2
A \7‘ < ba) bz_-\' \ =0 e ——— 51
SR
Do b, + Pl bz +1=0 —— - __ S2.
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The valuss of B, and @,_ are the square roots of the roots
of
2%aA |, 2%9:A
2 %P Z - X
where z replaces P:‘ and p, of equations 49 and 50.
In the particular example solved in the following section
= 2

hence z for this particular cese is

_ Vo o0 p- 2P~ aldid - kaZassaxPag) f] = [0 p- 2 1

2 N
—_——— . — 54
and
P\ =4\ 2 } -———————— e __ 55
Pz‘::"v Z
From equations 51 and 52
b, = =2 56
__f_[ﬁl“’(l _Bz-“z]
2 = =X
and y P *

by = Xi-Xa

_{‘-B.""(\ — Bl—dl ]
R lﬁzﬂf\ Pz-%2

Thus an approximation of the resolvent kernel is obtained.

——— e L~ 5

An approximate solution of the integral equation 36 ie

o0
43(") = $(x\ + A ‘ { \D‘e“ﬁ'\"‘\+ \:-ze-PZ\x"\}

[}

, - ¥, X - ¥2K
{C‘e Yy Cpe \‘ ds
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= {(xs + 7\[8'[3\" {U?:_C‘P‘ + ::_c;z}"'épzx{::;l + ::‘C!;z‘

N e—“ﬁ» b\ Cy + szq _ %, _ bz [ = }
¥+ N+ P2 - B ¥~ P
X%
+ e * h\cl + bz Ca —_ \)|C'L _ bz Cz \ ~———58
Yot B ¥z "'(‘31 V- B ¥a- (Sz

where all the disposable constants are now known and may be

substituted in the above equation.

4, Approximate ntial

solution of 2a by ex series.

222REL]

Equation 15 on page 14 expresses the illumination at

any poini on eiiher plane of two parallel infinite half planes,
’1x1wminataé by & uniform diffuse plane source, for the par— |

ticular case in which the réfl&atien factors of the planes are
tk& same. The equation for this case is

oo .
S O I 4 E5) A5 ——— _
Bl = -i[' \+x"] "7 j Lo+ (5y ] g o

°

The solution of this equation would give the illumination
in terms of the Xaminaaity‘a; However, for practical purposes
it is better to express the illumination at a point in terms
of & uvnit luminosity of the source. Dividing both sides of

the equatien by L, which is assumed constant, the equation



beconas
®
=\ e P Cb(E) dg - == —— 59
c‘)(") z[‘ .(_\,\_le + EJ[‘+(§~X)11312 g
° _
where c‘)(x) = E("’/L {a numeric) — ——-——- GO

For the determinalion of the exponential sum, to approxi-
mate the direct component of illumination, -‘l(x) was set

equal to I Fix) , i. e.,

(x) = 4 (x)=L[\-— 2 —] — - 1
{l z F % Viex®
where
- TR ~Yg X
F(X)={|— X Y @ 4 Cre . __ 62
VATl B )

To determine the disposable constants ¢y» ©2, v, and ¥y
the method outlined on page 24 wag used. Four equidistant
points were chosen for values of x. The a‘ppra-ximma and
the exact values of F(x), calculated from eguation 62 for
the particular values of x used, are given in Table I, The

values of the y's shown were subsiituted in
(7 =Yoya) = % (Yo=Y ) 2 + (2 = Yoy )=0 ——-———- 45
for which the roots of z are

Z = o862
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The disposable constanis 7, and ¥, were determined from

2 = e 4y _ . L _ 63
which yields

= ~-0,25040 ¢ - 0.2504
W= -1 3717996 - 1.31780

He g

The aé&at&aﬁg~ai ware determined from

"=A|+Az ——————————————— 40

Y= A2+t ArEz - — e — e 41
or

1= C + ¢
©0,292893= 0,77086% C, 4+ ©0.252099 Cp,

whigh yields

Cl
Ca

©.071S
©.9225

m R

Hance the two term exponential approximation

~0.2504 X , —L3780%
Flx) 2 o.o715 ¢ + o0.9225¢€ ) G4

Velues of F(x) aa&&a&&&aé(by glide rule using ihis approxi-
mation are given in Teble I under the heading marked F(WZ
Graph 2 shows the curves for the exsct a§§~tha'§pgrﬁxiﬁatﬁ»
functions for F(x). _

it may be remarked that this approximaiion enters intoe
the solution of the integral squation only in the determination
of the resolvent kernel. ’F@r'ﬁhévfinaz expression af‘%ba»

approximate solution; see equatioms 68 to 71.
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To delernine the disposable constants in a two term

exponential sum for the approximation of the kernel the

same procedure as above was used.

The kernel
S e — 65
K‘(x\‘-‘- e ]
was approximated by:
KIK)Z ave % o age
o 15500 @ “Y1FO% _ 5500 @ 3.9955 % < ————— 66

In Table 11 are shown the four equidistant points for
values of X which were chosen. In addition are shown vale
ues of the exact expression for the kernel together wiih
the results obiained from the exponential mpproximation.
The latter are given under ihe heading K% and were com-—
puted by slide rule. Graph 1 shows the exsct and approxi-
mation curves for K{(x).

Since all the disposable constants of equation 54 have
been determined (with the exception of p , which may be
given any value) the Frseaﬂ be obiained {or esoch value of

f"' This was done for p egual to 0.2, 0.4, 0.6 and 0.8.

The b's were determined from egquations 56 and 57.

Hence the solution of

o

¢(x)='z[\—-" -)+£§ c\(g)l % —---- ”
Viex® 2 \'_H(;-x\l’"

0




is

b0 = %[l-

K

o]
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+P{e‘” b.C, b, €2 } . e—"‘*"{ b, €, s C. }
K [l -1 l’z-ﬁn Vn-PL 3";-—/3:
-+ e—-E.X{ b, C, b, C, by ¢, v, C, }
. ¥t P B+ B2 3’|-p- Uc‘Pz
. 7 ¢
+e "‘{ b,Cp b, C, bl b, €, } —am o
¥+ B Tt P2 Ta-P Vo= Pe
Egquation 67 becomes for
J): 0.2
X *6'4903" __l'3\\\x
¢(K) = ;—_— { —\/=\=+=X7‘=1 4+ ©0.0055 € +1.09v3 e
’ -~ 0-2504 X% -\.3780%
4+ 0.-009) € — 1.078% € -G8
f:o.a-
‘ ~6A0VI% 11347 X
(xy = 2\ - X o.or0 - 6.6
q’\ Z\m +0.0003 € +o0.6435 ¢
-o0.250a% -1
4+ c.0224 @ —0.6\3\ € ' 37803--
‘3: o.lo
Cb( ) ‘ [ X 5 ~6.A519x -0.9332 X
X _ = | R + 0.0154 € 4+0.5123% €
2 \/\\-x"-]
-02504X -1.3780 %

+ 00449 e

—0.046\



=\ X -6.2006X ~0.6863X%
(})(x) B z[\- ] 4+ o.0180 € 4 O-4371 €
Yi+ x?
- ©.2504X% ~(,39780X
4 ©.0963 ¢ _ ©0.3630 € 0

The caleulated values of the ¢'sfor the various re-
flection factors are given in Table 1II. They are also

presented in the form of curves in graphe 3 and 4.
B. Experimential

The experimential work of H. F. ¥eacock and G, E. V.
Lambert.

In 1930, Meacock and Lambert® published the results
of their investigation of "The Efficiency of Light Wells®
‘(aaarﬁs},‘ Their work is wheolly experimential and thus pro-
vides a means for verification of the resulis obtained by
the analytical methods used in this thesis.

In their investigation they used a wmedel light court in
which court sizes varying from one to ten units in well
length and one~half to ten units in well depth could be ob~
tained; & width of unity for the well was held fixed. In
all cases the surfaces were painied with variocus shades of
grey matt paint with reflection factors varying from 24.6 to

80 percent.
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The daia are given in several different ways in the form
of graphs to show the sffect of each variable on the illumi-
nation in the 1§gh£ court.

A 1ight court with opening 1 x 10 and depth of 10 units,
from the information given by Heacock and Lambert, approaches
the condition that would be obtained by two parallel infinite
~ half planes; hence the experimental resulis of this case
form a basis for verification of the exponential approximations
used in this thesis.

For ease of comparison the experimental and analytical
resulis for p=0-8 have been plotted on graph 3, thé full
line curves are from analysis while the circular points are
from the experimental work of Heacoek and Lambert. Also
shown on graph 3 are the analytical results for f squal to
0, 0.2, 0.4 and 0.6.

In addition to the graphical presentation of their
resulis, Meacock and Lambert, have established the following
empirical formula for the interreflection component of il-

jumination
-ud :
E'R = ‘0454\1( Io’ )f _____________ 72

where
Yy =om1+ (01a9fy)
p o= reflection factor

m z +S\9 40.33d

L.
1= 5

X
R

L. < length of well opening



6

B=widlh of well opening
X= depth of observaltion on the canter line of the
isrgent wall of the well.

Heacock and Lamgberit state that eguation 72 renrssents
tho obgerved rosulis Lo an mocuraey of about 10 percent
over the whole range of dimensions and refleciion factors
investigated, exespt when the daylight factor ( b )
is below 1 percent, such a condition, after all, is of

g1light practical importance.
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IV. DISCUSSION

The close agreement of the experimental and analytical
resulis is clearly shown on graph 3 and in Table IV. As
the use of & grest anﬁhér-ﬁf gurves would have complicated
graph 3 and thereby detrscted from its usefulness, only the
experimental resulie for p=o-® are indicated. The agreew
ment is so eclose that the experimental results are given
Just ag points (indicated by emall cireles}, no curve being
drawn through them; the full line curve is the analytical
resull for ¢=os .« Table IV gives a comparison belween the
experimental and anslytical results for p equal to 0.635,
0.488 and 0.246 the walues used by Heacock and Lambert.

The oyperimental dsta are ftaken directly from the graphs
given by them, while the analytical results are obtained
from graph 4, although the curves for X egqual to 1.5, 2.5
and 3.5 {the values used by Hespook &nd Lambert) are not
shown. The agreement is very satisfactory, especially in
view of errors ana&ai&ah&y introduced in their expesriments,
in plotting, and in reading graphs.

The only verification of the analyticsl method used in
this thesis is experimental. An estimation ol the error in
the approximations for X and f, beyond that obiainable by
inspection from graphs 1 and £ and Tables I and 1I, was

congidered. However, since there are no snalytical means



for determining the maximum error in the solution of an
integral equation resulting from an approximation of ¥ and
f, it is fell that rigid determination of the errors in
these functione is unnecessary.

The most common scheme for oblaining an approximation
of & known funetion is to use polynomials. It has however,
been pointed out ihat sach term of an exponential series
has two disposable constants, whereas each term of a poly-
nomial has only ons disposable constant. Hence, the same
socuracy may be expected, in gemeral, from an p term ex-
ponential series as from & 2n term polynemial, It was
found, in the particular case solved in this thesis, that
the exponential series met the boundary conditions sgat-
isfactorily and ithe integrations were simplified. Buckley
in his werk on interreflections has used exponential approxi-
mations ex%eaargaz§¢ with gratifying results.

In his doctoral thesis, "Use of Functionals in &ktaimiﬁg
Approximate Solutions of Linear Operational Equations" G. L.
Gross discusses the general method of solution of all types
of linear equations by approximation. The generality of his
method is so broad that all explieit agpraxiﬁatian,ﬁaaemag
are apparently but special cases. The work of E. f’,
dhittaker and Prescoit crout® are examples.

while Whitteker and Croui give definite directione as
to how to proceed in the solution of certain lypes of
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VII. DIAGRARS
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Pirure 2 Cross section of two inlinite half-planes illuminated
by source across one end.
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Pirure 3 Direct illuminstion {rom unilorm diffuse plane source.
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Mizure 4 Illunination {rom an incremental strip.
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Figure 5 Illumination from a luminous rod.
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Fipure 6 Cross section of two parallel infinite planes
illuninated by luminous rod.
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Firure 7 Cross section of two parsllel infinite planes
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TABLE I

Exact and approximate values of F(x)

%

F(x) F(x) &

wd Prd gy wEL

1
0.531
0.2983
0.105
0.0815
0.0322

¥o=1
0.558786
¥ = D.292893
Yo = 0.105573
¥a = 0.051317
0,029857
- 0.013606

B ww

Lo T - B

b6, wh R FR EE . FW NE ER ORE EF KSR K wE Ry S Pee g4 ¥R

'Fgft LA AR S IR 2 L L AR - R IR S SR IRT L S S A LA LS
e B e EE RS ER EF FE RK W K ¥ s mw € fea
wH RN Rk 2R - eA WA BE WR R Re i

0.0198

T =0.850% | =~1.578%
* P(®) ¢ 0.0775¢ +0.92285e
- The approximate values given wers calculated by
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TABLE IX

Exact and approximate values of K{(x)

K{x)

¥
o’
Wy

JEe 5 s F6 EE BEHE FE W RE BE S BE K4 EW $4 &‘of&&ﬂl L2 3

G.85

<o

W R **ﬁ e Pew ga wi
° 3
il
it

0.909348

*
; *
-y *

*

»

¥, = 0.353553

1.5 iy, = 0.170674

*

$ WE S R SR B

0,089443
0.0316287
0., 004445

1
0.948
0,715
0.355

0,172
0.0819
0.0188
0.0002

®3 BF Favid e oy ¥ F

HE EE e A

o W R B R N R R

1

& KW R R KE B g EE pe EE Eu RE PR gy ¥R

fee ww F sw we

#*

K(X) % 1.55¢

slide rule.

e IiL4780%

~0.558

" E.096%

The approximate values given were calculated by
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TABLE IIX

ealeoulated values of c‘){x} for various

p'e

?if} f‘—"ﬁ'ds% f’-gﬁ% | f‘-‘-’ﬁmﬁ

?g,ﬁtav

LA NS mE ek RE Re R RS ER EY R RE &4 e e ke ¥

0.8

Fhr bk B we B Fa EE HEEE BE &8 B4 B W Fefee we

B T S TR

0.6120
0.4057
0.2678
0.1298
0.0707
0.0418
0.0186

0.5272
0.3079
0.1768
0.0694
0.0340
0.0196
0.0090

0.5

0.2764
0.1465
0.0528
0.0857
0.0149
0.0068

0.8630
0.3529
0,.2164
0.0941
0.0479
0.0275
0.0124

¥ BE Ee BR HE BEORE S BY Ne ke fx B8 sedes B
Bh Rk B BE e ¥ B KR BE ¥R KE % S8 ee wafae Wy

Faw #w ¥ Fb Au K5 Gk we bE FE B8 Er S5 Pe A fEr e

aw kB KN RS BR B wE G¥ safws uw

& R el W BE e

SR = B2

0.6884:
0.4908
0.3506
0.1993

*.

WA A R R

*

0.1211
0.0767

0.035%

E S ]

R R e N4 A

*



TABLE IV

Comparison between wﬁ@wwﬁwawwkaﬁm experinental results

80

Reflection Ffacter

&mﬁw.x

mﬁu(m N

m&%wn&i

nantal

Experis

nental

Analyte
waww

. Experi-

w¢mwww

Analyte
igal

Analyte
iecal

0.5

1

1.5
2,58
k.
4.5
BB

0475
0.362
0.865
0.16
0,103
0. 048

0.44
0,298
@t%ﬂ%
0,106
.06

0.42
0.88
0,199
0.108
0406

0:34
0,88
D.14
0.058
0.028

Oa m@m
U.28

0:147
2067
0.038

c. 215
0,184
041288
0,08
0,087

blonipibin

3 mﬁ%@ﬁwﬁmwwmw_&s&@wﬂa,amx&aaaw@w ﬁﬁm)wmﬁw@a@ﬁm

o Analytieal results obtained from graphs 3 and 4 of this thesis.
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